In this post I’ll discuss further developments relating to the energy transition modelling exercise covered in detail in the previous two posts (here and here). Consistent with Beyond this Brief Anomaly‘s inquiry ethos, I view the exercise as effectively open-ended. The findings at any point in time can be considered provisional and subject to refinement or revision as learning unfolds, as new ways for making sense of the modeled situation come to light, and as the ways in which the situation itself is understood change. This particular modelling effort should not be treated as the “last word” on the subject. Indeed, the best outcome from the work would be an increased public concern for the dynamics of energy transition — leading to new initiatives that explore the implications independently, going beyond what is possible with this relatively modest foray.
Nonetheless, the findings to date from this work demand close consideration from anyone seriously committed to renewable energy transition. The essential insight is this: in the rapid build-out required for a major transition in primary energy sources, effective aggregate energy return on investment (EROI) for a replacement source’s total stock of generators is lower than for an individual generator considered in isolation. The overall EROI ramps up from zero at the commencement of the transition, only reaching the nominal value for an individual generator over its full life-cycle when the transition is effectively complete i.e. when the generator stock reaches a steady state. All of the other key findings flow from this fundamental feature of any rapid transition in primary energy source. If a replacement energy source has lower nominal EROI than incumbent sources, then this becomes a critically important feasibility consideration.
The specific model developments introduced here are summarised as follows (I’ll discuss each in more detail below):
- The conversion of power outputs to energy service outputs in the form of heat and work for each supply source has been thoroughly overhauled, resulting in a far more refined implementation of this feature of the model.
- Conversion of self-power demand to emplacement and operating & maintenance (O&M) energy service demand in the form of heat and work has also been modified for each supply source.
- The maximum autonomy period that determines the amount of energy storage for wind and PV electricity can now be increased gradually as the intermittent supply penetration increases as a proportion of total electricity supply.
- For the default parameter set (now called the “reference scenario”, previously “standard run”), the maximum autonomy periods for wind and PV supply are arbitrarily reduced to 48 and 72 hours respectively, simply for the sake of heading off any knee-jerk response along the lines that “the amount of storage assumed to be necessary is unrealistic, therefore the entire model is suspect”.
- Detailed calculation is now included for levelised capital cost and O&M cost for wind and PV supply plant, and levelised capital cost for batteries (making the discussion of this in the previous post now redundant).
The updated version of the model to which this post relates is available here.
The full parameter set for the updated model’s “reference scenario” (equivalent to the “standard run” in previous posts) is available as a PDF here. Continue reading →
Like this:
Like Loading...