Navigating the energy transition landscape: summary findings from a dynamic systems view

I’ve been asked a few times now to provide an account of the energy transition modelling featured on Beyond this Brief Anomaly over the past year or so, that goes beyond the very brief article for The Conversation in May, but that is more accessible than the detailed documentation provided in earlier posts here, here and here. The article presented here is intended to fill that gap. It’s based on the presentation I gave in July at a University of Melbourne Carlton Connect Initiative event on energy transitions, discussed in the introduction to this earlier post. The presentation abstract will serve for orientation:

Energy transition discourse in both the public and academic spheres can be characterised by strong and often fixed views about the prospects for particular pathways. Given the unprecedented scale and complexity of the transition task facing humanity, greater circumspection may help ensure collective efforts are effective. While significant attention has been given to the question of how to satisfy future energy demand with renewable sources, dynamic effects during the transition period have received far less attention. Net energy considerations have particular relevance here. Exploratory modelling indicates that such considerations are relevant for more comprehensive feasibility assessment of renewable energy transition pathways. Moreover, this suggests there may be value in asking broader questions about how to ensure energy transition learning and praxis is sufficiently ‘fit for purpose’. Continue reading

Flying in the face of climate science—Part 1

NASA released data last Monday indicating that the recent streak of monthly global temperature records has continued, with July 2016 being the hottest month since the modern temperature record commenced in 1880. Each month in 2016 has now been the hottest on record—in fact each of the last fifteen months running have now seen record maximum temperatures. The first seven months of 2016 averaged 1.3oC warmer than at the start of the record in the late nineteenth century. Arctic sea ice monitoring shows it at lowest recorded coverage for five out of the first six months of the year. 2016 is almost certainly on the way to being the hottest year on record.

It is now just seven months since announcement of the historic Paris Agreement on climate change mitigation. That agreement supposedly paves the way for keeping global temperature increase during this century ‘well below’ 2oC, with hopes even of a more ambitious restriction to 1.5oC. This is viewed—rather arbitrarily—as the threshold for a relatively ‘safe’ global climate. In light of the current warming trend though, that mitigation task, regarded only last December as achievable by signatories to the Paris Agreement, seems already to have slipped from reach. Continue reading

Worldviews and energy futures

In last week’s post I linked to an article published recently in the Journal of Futures Studies (JFS) in which I look at the relationship between the questions that we ask about energy futures, what it is that we then take into account as relevant in exploring them, and the possible avenues for action that are apparent to us in the present as a result. As I pointed out, that article acts as a pretty good overview of the inquiry here at Beyond this Brief Anomaly, and also prepares the way for the phase into which this will head shortly. Before embarking on this next phase, it occurred to me that it might be worth dusting off some earlier work on which the JFS article was based that goes a little further in sketching out the background context for the inquiry, and that will help with locating the areas covered to date within that broader context. Continue reading

Responding to the Millennium Project’s Energy Challenge

An article providing a broad overview of the territory being explored at Beyond this Brief Anomaly has just has just been published in the Journal of Futures Studies (JFS):

Floyd, J. 2012, ‘Responding to the Millennium Project’s Energy Challenge: a futurist’s perspective’, vol. 16, no. 4, pp.21-32.

The journal is open access—click on the link above to open the pdf version on the JFS website. The article is part of a special issue of JFS comprising contributions from the Australasian Node of the Millennium Project for the 2011 State of the Future Report. Other articles from colleagues in the Australian futures and foresight practitioner community are available here. Continue reading

A rough guide to visualising energy density

In concluding the previous post, I pointed out the problem with comparing stock-based energy sources—such as fossil fuels and uranium—with flow-based sources—such as wind and solar radiation—on the basis of their associated energy densities. [Update: strictly speaking, we’re dealing here with the distinction between energy density and power density. While energy density is a straightforward and very useful way to characterise and compare energy storage media such as fuels and batteries, the infrastructure for producing fuels and electricity is often better characterised in terms of power density—the rate of energy transformation or supply per spatial unit. This reflects the more immediate dependence of a particular set of socio-economic arrangements, if it’s to be maintained, on its associated energy supply rates, rather than its energy reserves. For now though, I’ll continue the inquiry based on the concept of energy density, as it is arguably the more accessible concept given the nature of our direct experience with fuels—including our own fuels, the food that we eat!] Just to recap on the previous post, establishing a characteristic energy density for a given source requires that we first nominate an appropriate spatial dimension associated with that source. This is straightforward for stock-based sources involving a given quantity of material such as coal, oil or gas, and we can readily compare the energy densities between different sources. The characteristic spatial dimension is the volume occupied by the source material. Continue reading

Energy density and the prospects for renewably-powered societies

In the post prior to last week’s, I looked in some detail at the energy densities associated with each of the conventional fossil fuels that together account for over 80 percent of global primary energy supply. As I pointed out, the highly concentrated nature of these energy sources is a fundamental enabling factor in relation to the forms of social and economic organisation that have evolved over the course of the industrial age. The norms, expectations habits and tendencies with which we live together today—and that for most of us, most of the time, remain largely below our thresholds of awareness—are intertwined in various ways with the characteristics of our energy sources. Different energy sources necessarily entail differences in these characteristics. In transitioning between energy source regimes, if key characteristics associated with an emerging regime differ sufficiently from those with which our major techno-economic infrastructure and socio-cultural institutions have developed, then at some point the infrastructure and institutions will themselves need to change for the process of transition to proceed. When such transition points are reached, the connections between energy resources and cultural expectations can no longer remain submerged from view: we’re required to confront the changing situation, and in many cases, we too must undergo our own transformations, individually and collectively. Continue reading

The distribution of energy wealth

At the end of last week’s post, I pointed out that while breaking down aggregate global energy use by source starts to give us a more nuanced view of what it takes to enable our collective economic activity in physical terms, this still treats humanity as a single “giga-individual”. We’ll have a much better sense of the global picture if we look at how the collective view is made up in terms of energy use distribution across different groups of individuals. This is the contextual dimension that we’ll focus on in this post. Continue reading