Navigating the energy transition landscape: summary findings from a dynamic systems view

I’ve been asked a few times now to provide an account of the energy transition modelling featured on Beyond this Brief Anomaly over the past year or so, that goes beyond the very brief article for The Conversation in May, but that is more accessible than the detailed documentation provided in earlier posts here, here and here. The article presented here is intended to fill that gap. It’s based on the presentation I gave in July at a University of Melbourne Carlton Connect Initiative event on energy transitions, discussed in the introduction to this earlier post. The presentation abstract will serve for orientation:

Energy transition discourse in both the public and academic spheres can be characterised by strong and often fixed views about the prospects for particular pathways. Given the unprecedented scale and complexity of the transition task facing humanity, greater circumspection may help ensure collective efforts are effective. While significant attention has been given to the question of how to satisfy future energy demand with renewable sources, dynamic effects during the transition period have received far less attention. Net energy considerations have particular relevance here. Exploratory modelling indicates that such considerations are relevant for more comprehensive feasibility assessment of renewable energy transition pathways. Moreover, this suggests there may be value in asking broader questions about how to ensure energy transition learning and praxis is sufficiently ‘fit for purpose’. Continue reading

EROI and the limits of conventional feasibility assessment—Part 3: Intermittency & seasonal variation

In the previous post in this sequence, I developed the concept of power return on investment as a complementary indicator to energy return on investment (EROI) for assessing the viability of wind and solar PV as alternatives to thermal electricity generation. I used as my departure point for this an article in which Ioannis Kessides and David Wade introduce a dynamic approach to EROI analysis.[1] Specifically, I drew on an illustrative example that they present, based on IEA data for coal-fired thermal and wind electricity generation in Japan, showing how the time required for coal and wind installations to provide sufficient energy to emplace additional generating capacity equal to their own can differ by an order of magnitude even where the EROI for coal and wind is identical. Given that the data on which this example was based was from prior to 2002, both the doubling time in Kessides & Wade’s example and the power return on investment in the extended analysis would likely be improved if up-to-date figures for emplacement energy and capacity factor were substituted for those from the IEA study. Unfortunately, this goes only a limited way to mitigating the central issue in terms of “real world” considerations. Continue reading