The City as Commons

A broadly held view in the modern world is that economic relations are best governed by some mix of state regulation, and market-mediated exchange of privately owned resources. This tends to reflect a deeper assumption: ‘ordinary citizens’ are not well placed to collectively organise the managing of resources in which they have shared interests – left to their own devices, narrow self-interest will eventually lead to over-exploitation and deterioration of the resource. The dominance of states and markets in arranging economic life is, however, a relatively recent development in public policy thinking. And it was in the wake of Garret Hardin’s (famous or infamous depending on who you ask)1968 essay ‘The tragedy of the commons’ that the idea gained widespread popular appeal in liberal democracies.[1]

Today though, while the state-private duopoly continues as the dominant influence in economic governance, claims for its exclusive empirical validity or moral superiority no longer remain tenable. This is thanks in large part to the work of political economist Elenor Ostrom, co-winner of the 2009 Nobel Memorial Prize in Economics for her work demonstrating that successful commons remain alive and well around the world today. There are many situations where resources held and managed in common by those relying on them to meet their needs are simply not subject to the fate ascribed by Hardin. Such management may even improve the state of a commons. Continue reading

The energy costs of energy transition: model refinements and further learning

In this post I’ll discuss further developments relating to the energy transition modelling exercise covered in detail in the previous two posts (here and here). Consistent with Beyond this Brief Anomaly‘s inquiry ethos, I view the exercise as effectively open-ended. The findings at any point in time can be considered provisional and subject to refinement or revision as learning unfolds, as new ways for making sense of the modeled situation come to light, and as the ways in which the situation itself is understood change. This particular modelling effort should not be treated as the “last word” on the subject. Indeed, the best outcome from the work would be an increased public concern for the dynamics of energy transition — leading to new initiatives that explore the implications independently, going beyond what is possible with this relatively modest foray.

Nonetheless, the findings to date from this work demand close consideration from anyone seriously committed to renewable energy transition. The essential insight is this: in the rapid build-out required for a major transition in primary energy sources, effective aggregate energy return on investment (EROI) for a replacement source’s total stock of generators is lower than for an individual generator considered in isolation. The overall EROI ramps up from zero at the commencement of the transition, only reaching the nominal value for an individual generator over its full life-cycle when the transition is effectively complete i.e. when the generator stock reaches a steady state. All of the other key findings flow from this fundamental feature of any rapid transition in primary energy source. If a replacement energy source has lower nominal EROI than incumbent sources, then this becomes a critically important feasibility consideration.

The specific model developments introduced here are summarised as follows (I’ll discuss each in more detail below):

  1. The conversion of power outputs to energy service outputs in the form of heat and work for each supply source has been thoroughly overhauled, resulting in a far more refined implementation of this feature of the model.
  2. Conversion of self-power demand to emplacement and operating & maintenance (O&M) energy service demand in the form of heat and work has also been modified for each supply source.
  3. The maximum autonomy period that determines the amount of energy storage for wind and PV electricity can now be increased gradually as the intermittent supply penetration increases as a proportion of total electricity supply.
  4. For the default parameter set (now called the “reference scenario”, previously “standard run”), the maximum autonomy periods for wind and PV supply are arbitrarily reduced to 48 and 72 hours respectively, simply for the sake of heading off any knee-jerk response along the lines that “the amount of storage assumed to be necessary is unrealistic, therefore the entire model is suspect”.
  5. Detailed calculation is now included for levelised capital cost and O&M cost  for wind and PV supply plant, and levelised capital cost for batteries (making the discussion of this in the previous post now redundant).

The updated version of the model to which this post relates is available here.

The full parameter set for the updated model’s “reference scenario” (equivalent to the “standard run” in previous posts) is available as a PDF here. Continue reading

An integrated view of energy transition: what can we learn?

In this post I take a detailed look at the simulation results for the energy transition model introduced in the previous post, when it is run with the default parameter values—what I referred to last time as the “standard run”.

Before getting started though, this is a good place to reiterate the motivation for undertaking this work. I’m prompted here by a post on John Quiggin’s blog that he provided a link to as a comment on the previous post. The post is a 300 word dismissal of the relevance of energy return on investment in assessing PV electricity supply performance.  It was—I assume inadvertently—a timely demonstration of the central point I was making: to have a productive conversation about these issues, we need to take a comprehensive, integrated view. But looking beyond the technical superficiality of John’s argument, he also made the misleading inference that a concern with the energetics of energy transition is the exclusive preserve of “renewable energy critics”.

With this in mind, I’ll state my position as clearly as I can here: an interest in critically assessing the capacity for renewable energy systems to directly substitute for incumbent energy systems should not be conflated with “being opposed to renewable energy”. I myself am a long-time proponent for and supporter of a transition to renewably-powered societies. Having taken the time to be fairly broadly and deeply informed in this area, it is apparent that there are significant uncertainties relating to the forms that such societies might take, especially given the tight coupling between current globally-dominant societal forms, and the characteristics of their primary energy sources. It’s apparent to me that humanity stands a better chance of developing future societies supportive of high life quality if these uncertainties are taken seriously, rather than being discounted or ignored. The question that most interests me here is:

What forms might future renewably-powered societies take, if they are to enable humans and other life forms to live well together?

And following from this, how might we best pursue the process of transition towards such future societies?

Developing a more integrated view of the relationship between societal forms and their enabling energy systems would seem to be of benefit here. I do work in this area primarily because a widespread interest in this is not apparent amongst the communities that currently dominate renewable energy transition discourse and practice. Furthermore, my own inquiry suggests that failing to take a more integrated approach as early as possible could have increasingly adverse consequences as such a transition proceeds.

And with that, it’s back to the primary task of considering what our energy transition model might have to tell us about such matters.

Continue reading

Energy transition, renewables and batteries: a systems view

In the concluding section of the report made available here last month, I hinted at a view on the role of batteries in global energy supply that, in the wake of the announcement from Tesla CEO Elon Musk on 30 April this year, may seem rather at odds with prevailing popular sentiment. I suggested there that, while significant numbers of electricity consumers will likely be motivated to go “off grid” as battery costs reduce, this will entail feedback effects with implications that can reasonably be expected to make for a change trajectory far less linear and predictable than many commentators envisage. Such a view is, of course, entirely consistent with the systemic approach to thinking about energy transitions for which Beyond this Brief Anomaly advocates.

In this post, I introduce the energy transition model I’ve been developing over the past few months, to help make better sense of the physical economic implications of a global energy shift in which wind and PV generation with battery buffering dominate electricity supply. Continue reading

Economic Trend Report: Energy Descent, Transition and Alternatives to 2050

For the past few months, I’ve focused the time available for Beyond this Brief Anomaly on background research and modelling aimed at testing more rigorously some of the conclusions towards which the inquiry has pointed so far. This has come at the cost of keeping things active here though. I’m planning to share some of the results of this work shortly. In the meantime, I was recently looking back over a piece of work on energy transition as a key economic trend that I did last year for a client. It occurred to me that it provides a remarkably good summary of the inquiry’s findings to date, and sets out many of the conclusions that I’ve been stress testing behind the scenes. The report below is a version of the original briefing paper revised slightly for a more general audience than the original. It was last updated in November 2014, but for the most part— save perhaps for updated global oil production data and the post-price plunge tight oil situation in the USA—it continues to be relevant today. Also, the brief comments in relation to battery storage may, to some readers at least, seem rather at odds with the popular view that has gained such a significant boost in recent months. More on that when I report on the background work I’ve been up to.

Download the report pdf.

Continue reading

Descent Pathways

I’ve noted on a number of occasions over the course of this inquiry that Beyond this Brief Anomaly is motivated by interests and concerns that go well beyond its notional focus on “energy issues”. The broader question to which this relates can perhaps be most simply stated in two parts:

  1. What might it mean for humanity to live well, together?
  2. How might such an existence be realised?

In conventional development theory and practice, whether wellbeing is viewed in functional-material (“standard of living”) terms or takes into account experienced life quality (“quality of life”), the conditions for wellbeing are considered in almost exclusively economic terms. Wellbeing, in whatever way this is conceived, therefore tends to be associated by default with the globally dominant consumer-industrial form of economic organisation. Increasing wellbeing supposes expansion of this. Consider, for instance, the United Nations Development Programme’s Human Development Index. Each of the index’s components–life expectancy, literacy, school enrollment and income–is either directly economic in nature, or is dependent on economic factors for its improvement. Want improved health? Increase expenditure on medical infrastructure and services that reduce mortality. Want improved education? Build more schools and employ more teachers. This is obviously a very rough caricature. I ignore myriad nuances here, particularly at the micro scale. But in terms of headline initiatives attracting the majority of resources, I suspect few would argue that the generalisation is entirely unreasonable. Continue reading