Navigating the energy transition landscape: summary findings from a dynamic systems view

I’ve been asked a few times now to provide an account of the energy transition modelling featured on Beyond this Brief Anomaly over the past year or so, that goes beyond the very brief article for The Conversation in May, but that is more accessible than the detailed documentation provided in earlier posts here, here and here. The article presented here is intended to fill that gap. It’s based on the presentation I gave in July at a University of Melbourne Carlton Connect Initiative event on energy transitions, discussed in the introduction to this earlier post. The presentation abstract will serve for orientation:

Energy transition discourse in both the public and academic spheres can be characterised by strong and often fixed views about the prospects for particular pathways. Given the unprecedented scale and complexity of the transition task facing humanity, greater circumspection may help ensure collective efforts are effective. While significant attention has been given to the question of how to satisfy future energy demand with renewable sources, dynamic effects during the transition period have received far less attention. Net energy considerations have particular relevance here. Exploratory modelling indicates that such considerations are relevant for more comprehensive feasibility assessment of renewable energy transition pathways. Moreover, this suggests there may be value in asking broader questions about how to ensure energy transition learning and praxis is sufficiently ‘fit for purpose’. Continue reading

Flying in the face of climate science—Part 2: Air travel emissions in perspective

The first installment of this two-part series set out the case for why carbon offsetting is incompatible with serious response to climate change, and looked specifically at what this implies for rich-world attachment to air travel.

In coming to terms with why this does actually matter, there is a further basic question that needs grappling with: why should flying in particular be singled out for such scrutiny? It’s hardly the largest source of emissions overall, so why give it such weight? With carbon dioxide from aviation accounting for just 2 percent of total global carbon dioxide emissions (roughly 12 percent of CO2 emissions from transport, which in turn is 15 percent of the global total) the concern I’m expressing might seem thoroughly misplaced. Even for Australia, direct aviation emissions account only for 3.1 percent of the national total for all greenhouse gases (i.e. on a Global Warming Potential CO2 equivalent basis, rather than in terms of CO2 alone). I suspect this may in fact play a substantial part in why broader cultural attitudes diverge so sharply from my own.

There is a two-level problem with this apparently obvious but far too simplistic view. Continue reading

Flying in the face of climate science—Part 1

NASA released data last Monday indicating that the recent streak of monthly global temperature records has continued, with July 2016 being the hottest month since the modern temperature record commenced in 1880. Each month in 2016 has now been the hottest on record—in fact each of the last fifteen months running have now seen record maximum temperatures. The first seven months of 2016 averaged 1.3oC warmer than at the start of the record in the late nineteenth century. Arctic sea ice monitoring shows it at lowest recorded coverage for five out of the first six months of the year. 2016 is almost certainly on the way to being the hottest year on record.

It is now just seven months since announcement of the historic Paris Agreement on climate change mitigation. That agreement supposedly paves the way for keeping global temperature increase during this century ‘well below’ 2oC, with hopes even of a more ambitious restriction to 1.5oC. This is viewed—rather arbitrarily—as the threshold for a relatively ‘safe’ global climate. In light of the current warming trend though, that mitigation task, regarded only last December as achievable by signatories to the Paris Agreement, seems already to have slipped from reach. Continue reading

The City as Commons

A broadly held view in the modern world is that economic relations are best governed by some mix of state regulation, and market-mediated exchange of privately owned resources. This tends to reflect a deeper assumption: ‘ordinary citizens’ are not well placed to collectively organise the managing of resources in which they have shared interests – left to their own devices, narrow self-interest will eventually lead to over-exploitation and deterioration of the resource. The dominance of states and markets in arranging economic life is, however, a relatively recent development in public policy thinking. And it was in the wake of Garret Hardin’s (famous or infamous depending on who you ask)1968 essay ‘The tragedy of the commons’ that the idea gained widespread popular appeal in liberal democracies.[1]

Today though, while the state-private duopoly continues as the dominant influence in economic governance, claims for its exclusive empirical validity or moral superiority no longer remain tenable. This is thanks in large part to the work of political economist Elenor Ostrom, co-winner of the 2009 Nobel Memorial Prize in Economics for her work demonstrating that successful commons remain alive and well around the world today. There are many situations where resources held and managed in common by those relying on them to meet their needs are simply not subject to the fate ascribed by Hardin. Such management may even improve the state of a commons. Continue reading

A deeper dive on PV ‘EROI’

In this post I give a quick overview of recent goings on in the world of Beyond this Brief Anomaly, and then take a far more detailed look at the basis for the input values relating to PV EROI in the Insight Maker net energy return model: Prieto & Hall’s field study of utility-scale photovoltaic electricity generation for Spain over the period 2009-2011.[2] Having spent quite a bit of time examining this source previously and in the run up to writing this post, I anticipated that the post would simply be a fairly dry technical document. For most folks, this is indeed an apt description. But for that small community aware of the controversies surrounding Prieto & Hall’s book, there’s a surprise in store.  If you’re such a reader (and especially if you followed Ugo Bardi’s blog posts related to this a little while back here and here), then there’s a dramatic twist ahead. Yesterday in writing this post, closer scrutiny of Prieto & Hall’s study alongside the meta-study of PV EROI by Bhandari et al. (that I first learned about from those posts at Cassandra’s Legacy–thank you Ugo) brought to light something quite unexpected. But no spoilers — you’ll need to read on for the details.

And if anyone thinks I’m off the mark with this ‘discovery’, please weigh in to let me and other readers know. I’m really scratching my head over why this hasn’t come to light previously–it seems rather obvious in hindsight. Continue reading

What is the potential for renewable energy?

In the most recent posts last year, I looked in some detail at what the energy costs of energy supply imply for global-scale transition from fossil fuels to (mostly) renewable energy (RE) sources. The modelling presented there highlighted the importance of taking a dynamic view of transition – rather than just looking at the start and end states. If we’re serious about identifying feasible transition pathways, this type of approach has an important role to play. It’s reassuring to see that more significant effort is starting to be made in this area.

One reason this has been slow to gain traction is the idea that renewable energy sources are so abundant as to be without practical limits. It’s a popular and compelling story, but unfortunately, also one that obscures as much as it reveals. Here, I’ll explain why, and set out the detailed case for why we are much better served by thinking in terms of the practically realisable potential for renewable energy, rather than the raw physical flows. At the heart of this is a basic insight, expressed in a simple aphorism: ‘each joule of energy is not equal’. Continue reading

The energy costs of energy transition: model refinements and further learning

In this post I’ll discuss further developments relating to the energy transition modelling exercise covered in detail in the previous two posts (here and here). Consistent with Beyond this Brief Anomaly‘s inquiry ethos, I view the exercise as effectively open-ended. The findings at any point in time can be considered provisional and subject to refinement or revision as learning unfolds, as new ways for making sense of the modeled situation come to light, and as the ways in which the situation itself is understood change. This particular modelling effort should not be treated as the “last word” on the subject. Indeed, the best outcome from the work would be an increased public concern for the dynamics of energy transition — leading to new initiatives that explore the implications independently, going beyond what is possible with this relatively modest foray.

Nonetheless, the findings to date from this work demand close consideration from anyone seriously committed to renewable energy transition. The essential insight is this: in the rapid build-out required for a major transition in primary energy sources, effective aggregate energy return on investment (EROI) for a replacement source’s total stock of generators is lower than for an individual generator considered in isolation. The overall EROI ramps up from zero at the commencement of the transition, only reaching the nominal value for an individual generator over its full life-cycle when the transition is effectively complete i.e. when the generator stock reaches a steady state. All of the other key findings flow from this fundamental feature of any rapid transition in primary energy source. If a replacement energy source has lower nominal EROI than incumbent sources, then this becomes a critically important feasibility consideration.

The specific model developments introduced here are summarised as follows (I’ll discuss each in more detail below):

  1. The conversion of power outputs to energy service outputs in the form of heat and work for each supply source has been thoroughly overhauled, resulting in a far more refined implementation of this feature of the model.
  2. Conversion of self-power demand to emplacement and operating & maintenance (O&M) energy service demand in the form of heat and work has also been modified for each supply source.
  3. The maximum autonomy period that determines the amount of energy storage for wind and PV electricity can now be increased gradually as the intermittent supply penetration increases as a proportion of total electricity supply.
  4. For the default parameter set (now called the “reference scenario”, previously “standard run”), the maximum autonomy periods for wind and PV supply are arbitrarily reduced to 48 and 72 hours respectively, simply for the sake of heading off any knee-jerk response along the lines that “the amount of storage assumed to be necessary is unrealistic, therefore the entire model is suspect”.
  5. Detailed calculation is now included for levelised capital cost and O&M cost  for wind and PV supply plant, and levelised capital cost for batteries (making the discussion of this in the previous post now redundant).

The updated version of the model to which this post relates is available here.

The full parameter set for the updated model’s “reference scenario” (equivalent to the “standard run” in previous posts) is available as a PDF here. Continue reading