Energy transition, renewables and batteries: a systems view

In the concluding section of the report made available here last month, I hinted at a view on the role of batteries in global energy supply that, in the wake of the announcement from Tesla CEO Elon Musk on 30 April this year, may seem rather at odds with prevailing popular sentiment. I suggested there that, while significant numbers of electricity consumers will likely be motivated to go “off grid” as battery costs reduce, this will entail feedback effects with implications that can reasonably be expected to make for a change trajectory far less linear and predictable than many commentators envisage. Such a view is, of course, entirely consistent with the systemic approach to thinking about energy transitions for which Beyond this Brief Anomaly advocates.

In this post, I introduce the energy transition model I’ve been developing over the past few months, to help make better sense of the physical economic implications of a global energy shift in which wind and PV generation with battery buffering dominate electricity supply. Continue reading

EROI and the limits of conventional feasibility assessment—Part 3: Intermittency & seasonal variation

In the previous post in this sequence, I developed the concept of power return on investment as a complementary indicator to energy return on investment (EROI) for assessing the viability of wind and solar PV as alternatives to thermal electricity generation. I used as my departure point for this an article in which Ioannis Kessides and David Wade introduce a dynamic approach to EROI analysis.[1] Specifically, I drew on an illustrative example that they present, based on IEA data for coal-fired thermal and wind electricity generation in Japan, showing how the time required for coal and wind installations to provide sufficient energy to emplace additional generating capacity equal to their own can differ by an order of magnitude even where the EROI for coal and wind is identical. Given that the data on which this example was based was from prior to 2002, both the doubling time in Kessides & Wade’s example and the power return on investment in the extended analysis would likely be improved if up-to-date figures for emplacement energy and capacity factor were substituted for those from the IEA study. Unfortunately, this goes only a limited way to mitigating the central issue in terms of “real world” considerations. Continue reading