What is the potential for renewable energy?

In the most recent posts last year, I looked in some detail at what the energy costs of energy supply imply for global-scale transition from fossil fuels to (mostly) renewable energy (RE) sources. The modelling presented there highlighted the importance of taking a dynamic view of transition – rather than just looking at the start and end states. If we’re serious about identifying feasible transition pathways, this type of approach has an important role to play. It’s reassuring to see that more significant effort is starting to be made in this area.

One reason this has been slow to gain traction is the idea that renewable energy sources are so abundant as to be without practical limits. It’s a popular and compelling story, but unfortunately, also one that obscures as much as it reveals. Here, I’ll explain why, and set out the detailed case for why we are much better served by thinking in terms of the practically realisable potential for renewable energy, rather than the raw physical flows. At the heart of this is a basic insight, expressed in a simple aphorism: ‘each joule of energy is not equal’. Continue reading

EROI and the limits of conventional feasibility assessment—Part 1: The technical potential for renewables

A fundamental requirement that any energy supply system must satisfy for economic viability is a sufficiently high energy return on energy investment (EROI) for manufacturing, installing, operating and maintaining the system over its operating life. The question of what constitutes a sufficient return depends on the nature of the economy and society that the energy supply system is intended to support—while an EROI <1 implies a net energy sink, an EROI >1 does not automatically entail viability. Consider the limiting case in which net energy supply is zero, i.e. EROI =1. This would entail an economy consisting entirely of an energy supply sector that supported itself, but allowed for no economic activity beyond this. It’s certainly possible to imagine a functional economy along such lines, but it implies that every person living in such a society must dedicate their life to and focus all of their attention and effort on providing for the subsistence energy needs of their economic system. Such an economic system would serve no purpose beyond its own perpetuation; citizens of such a society might very well consider their lives to constitute a form of slavery to their economy. Continue reading