Retrofitting Suburbia for Energy Descent Futures

Last week I attended the Eco-city World Summit in Melbourne.[1] On Friday, permaculture co-originator David Holmgren presented an ‘alternative keynote’ based on his forthcoming book RetroSuburbia. The session was arranged and chaired by Sam Alexander, Research Fellow in Sustainable Economy and Consumption with Summit co-organisers Melbourne Sustainable Society Institute. Sam invited me to join award winning landscape architect and urban designer Kate Dundas in responding briefly to David’s presentation. My brief was to drill down a little further into the energy context and implications for RetroSuburbia. Continue reading

An integrated view of energy transition: what can we learn?

In this post I take a detailed look at the simulation results for the energy transition model introduced in the previous post, when it is run with the default parameter values—what I referred to last time as the “standard run”.

Before getting started though, this is a good place to reiterate the motivation for undertaking this work. I’m prompted here by a post on John Quiggin’s blog that he provided a link to as a comment on the previous post. The post is a 300 word dismissal of the relevance of energy return on investment in assessing PV electricity supply performance.  It was—I assume inadvertently—a timely demonstration of the central point I was making: to have a productive conversation about these issues, we need to take a comprehensive, integrated view. But looking beyond the technical superficiality of John’s argument, he also made the misleading inference that a concern with the energetics of energy transition is the exclusive preserve of “renewable energy critics”.

With this in mind, I’ll state my position as clearly as I can here: an interest in critically assessing the capacity for renewable energy systems to directly substitute for incumbent energy systems should not be conflated with “being opposed to renewable energy”. I myself am a long-time proponent for and supporter of a transition to renewably-powered societies. Having taken the time to be fairly broadly and deeply informed in this area, it is apparent that there are significant uncertainties relating to the forms that such societies might take, especially given the tight coupling between current globally-dominant societal forms, and the characteristics of their primary energy sources. It’s apparent to me that humanity stands a better chance of developing future societies supportive of high life quality if these uncertainties are taken seriously, rather than being discounted or ignored. The question that most interests me here is:

What forms might future renewably-powered societies take, if they are to enable humans and other life forms to live well together?

And following from this, how might we best pursue the process of transition towards such future societies?

Developing a more integrated view of the relationship between societal forms and their enabling energy systems would seem to be of benefit here. I do work in this area primarily because a widespread interest in this is not apparent amongst the communities that currently dominate renewable energy transition discourse and practice. Furthermore, my own inquiry suggests that failing to take a more integrated approach as early as possible could have increasingly adverse consequences as such a transition proceeds.

And with that, it’s back to the primary task of considering what our energy transition model might have to tell us about such matters.

Continue reading

Economic Trend Report: Energy Descent, Transition and Alternatives to 2050

For the past few months, I’ve focused the time available for Beyond this Brief Anomaly on background research and modelling aimed at testing more rigorously some of the conclusions towards which the inquiry has pointed so far. This has come at the cost of keeping things active here though. I’m planning to share some of the results of this work shortly. In the meantime, I was recently looking back over a piece of work on energy transition as a key economic trend that I did last year for a client. It occurred to me that it provides a remarkably good summary of the inquiry’s findings to date, and sets out many of the conclusions that I’ve been stress testing behind the scenes. The report below is a version of the original briefing paper revised slightly for a more general audience than the original. It was last updated in November 2014, but for the most part— save perhaps for updated global oil production data and the post-price plunge tight oil situation in the USA—it continues to be relevant today. Also, the brief comments in relation to battery storage may, to some readers at least, seem rather at odds with the popular view that has gained such a significant boost in recent months. More on that when I report on the background work I’ve been up to.

Download the report pdf.

Continue reading

Descent Pathways

I’ve noted on a number of occasions over the course of this inquiry that Beyond this Brief Anomaly is motivated by interests and concerns that go well beyond its notional focus on “energy issues”. The broader question to which this relates can perhaps be most simply stated in two parts:

  1. What might it mean for humanity to live well, together?
  2. How might such an existence be realised?

In conventional development theory and practice, whether wellbeing is viewed in functional-material (“standard of living”) terms or takes into account experienced life quality (“quality of life”), the conditions for wellbeing are considered in almost exclusively economic terms. Wellbeing, in whatever way this is conceived, therefore tends to be associated by default with the globally dominant consumer-industrial form of economic organisation. Increasing wellbeing supposes expansion of this. Consider, for instance, the United Nations Development Programme’s Human Development Index. Each of the index’s components–life expectancy, literacy, school enrollment and income–is either directly economic in nature, or is dependent on economic factors for its improvement. Want improved health? Increase expenditure on medical infrastructure and services that reduce mortality. Want improved education? Build more schools and employ more teachers. This is obviously a very rough caricature. I ignore myriad nuances here, particularly at the micro scale. But in terms of headline initiatives attracting the majority of resources, I suspect few would argue that the generalisation is entirely unreasonable. Continue reading

EROI and the limits of conventional feasibility assessment—Part 2: Stocks, flows and power return on investment

Update, 24 July 2015: while doing some background work for a forthcoming post that draws on data presented here, I reconsidered the best basis to use for the PV comparison. The post has now been revised to reflect my updated thinking, specifically using a higher EROI for PV of 4.17:1, rather than the original of 2.45:1, by considering only a subset of Prieto and Hall’s energy costs. In the course of making this change, I also discovered an error in the original calculation, in the ratio of emplacement energy to operating & maintenance energy for PV (relatively minor impact only, from 0.59 to 0.55). This is also corrected here.


 

An important principle to bear in mind for inquiring into the ways that energy-related considerations influence human societies is that, by and large, economies are dependent for their present functioning not on the total stocks of energy sources they might have at their disposal, but on the current rate at which energy sources are supplied and utilised. This is a key distinction in understanding the phenomenon of peak oil. “Peak oil” for a given field or territory is taken to have occurred at the point in time for which the production rate for petroleum—appropriately defined, i.e. by grade or composition—reaches a maximum, and thereafter declines. But at such a time, as much as half of the ultimate resource may still be available. Peak oil doesn’t imply that we’re on the brink of “running out of oil”. What it means is that the production rate is at the highest level that will ever be achieved. It is the change in rate that is central for understanding the implications of the phenomenon for future social prospects, as a declining aggregate oil production rate (i.e. where a shortfall from one region cannot be compensated by increased production from others) implies greatly foreshortened prospects for further growth in the non-energy related economic activity enabled by that production, and in fact very likely implies commensurate economic contraction. The same principle applies to any resource that is ultimately stock-limited, but for which it is the supply rate upon which the present nature of the economic activity enabled by that resource depends. Continue reading

EROI and the limits of conventional feasibility assessment—Part 1: The technical potential for renewables

A fundamental requirement that any energy supply system must satisfy for economic viability is a sufficiently high energy return on energy investment (EROI) for manufacturing, installing, operating and maintaining the system over its operating life. The question of what constitutes a sufficient return depends on the nature of the economy and society that the energy supply system is intended to support—while an EROI <1 implies a net energy sink, an EROI >1 does not automatically entail viability. Consider the limiting case in which net energy supply is zero, i.e. EROI =1. This would entail an economy consisting entirely of an energy supply sector that supported itself, but allowed for no economic activity beyond this. It’s certainly possible to imagine a functional economy along such lines, but it implies that every person living in such a society must dedicate their life to and focus all of their attention and effort on providing for the subsistence energy needs of their economic system. Such an economic system would serve no purpose beyond its own perpetuation; citizens of such a society might very well consider their lives to constitute a form of slavery to their economy. Continue reading