Retrofitting Suburbia for Energy Descent Futures

Last week I attended the Eco-city World Summit in Melbourne.[1] On Friday, permaculture co-originator David Holmgren presented an ‘alternative keynote’ based on his forthcoming book RetroSuburbia. The session was arranged and chaired by Sam Alexander, Research Fellow in Sustainable Economy and Consumption with Summit co-organisers Melbourne Sustainable Society Institute. Sam invited me to join award winning landscape architect and urban designer Kate Dundas in responding briefly to David’s presentation. My brief was to drill down a little further into the energy context and implications for RetroSuburbia. Continue reading

An integrated view of energy transition: what can we learn?

In this post I take a detailed look at the simulation results for the energy transition model introduced in the previous post, when it is run with the default parameter values—what I referred to last time as the “standard run”.

Before getting started though, this is a good place to reiterate the motivation for undertaking this work. I’m prompted here by a post on John Quiggin’s blog that he provided a link to as a comment on the previous post. The post is a 300 word dismissal of the relevance of energy return on investment in assessing PV electricity supply performance.  It was—I assume inadvertently—a timely demonstration of the central point I was making: to have a productive conversation about these issues, we need to take a comprehensive, integrated view. But looking beyond the technical superficiality of John’s argument, he also made the misleading inference that a concern with the energetics of energy transition is the exclusive preserve of “renewable energy critics”.

With this in mind, I’ll state my position as clearly as I can here: an interest in critically assessing the capacity for renewable energy systems to directly substitute for incumbent energy systems should not be conflated with “being opposed to renewable energy”. I myself am a long-time proponent for and supporter of a transition to renewably-powered societies. Having taken the time to be fairly broadly and deeply informed in this area, it is apparent that there are significant uncertainties relating to the forms that such societies might take, especially given the tight coupling between current globally-dominant societal forms, and the characteristics of their primary energy sources. It’s apparent to me that humanity stands a better chance of developing future societies supportive of high life quality if these uncertainties are taken seriously, rather than being discounted or ignored. The question that most interests me here is:

What forms might future renewably-powered societies take, if they are to enable humans and other life forms to live well together?

And following from this, how might we best pursue the process of transition towards such future societies?

Developing a more integrated view of the relationship between societal forms and their enabling energy systems would seem to be of benefit here. I do work in this area primarily because a widespread interest in this is not apparent amongst the communities that currently dominate renewable energy transition discourse and practice. Furthermore, my own inquiry suggests that failing to take a more integrated approach as early as possible could have increasingly adverse consequences as such a transition proceeds.

And with that, it’s back to the primary task of considering what our energy transition model might have to tell us about such matters.

Continue reading