Descent Pathways

I’ve noted on a number of occasions over the course of this inquiry that Beyond this Brief Anomaly is motivated by interests and concerns that go well beyond its notional focus on “energy issues”. The broader question to which this relates can perhaps be most simply stated in two parts:

  1. What might it mean for humanity to live well, together?
  2. How might such an existence be realised?

In conventional development theory and practice, whether wellbeing is viewed in functional-material (“standard of living”) terms or takes into account experienced life quality (“quality of life”), the conditions for wellbeing are considered in almost exclusively economic terms. Wellbeing, in whatever way this is conceived, therefore tends to be associated by default with the globally dominant consumer-industrial form of economic organisation. Increasing wellbeing supposes expansion of this. Consider, for instance, the United Nations Development Programme’s Human Development Index. Each of the index’s components–life expectancy, literacy, school enrollment and income–is either directly economic in nature, or is dependent on economic factors for its improvement. Want improved health? Increase expenditure on medical infrastructure and services that reduce mortality. Want improved education? Build more schools and employ more teachers. This is obviously a very rough caricature. I ignore myriad nuances here, particularly at the micro scale. But in terms of headline initiatives attracting the majority of resources, I suspect few would argue that the generalisation is entirely unreasonable. Continue reading

EROI and the limits of conventional feasibility assessment—Part 3: Intermittency & seasonal variation

In the previous post in this sequence, I developed the concept of power return on investment as a complementary indicator to energy return on investment (EROI) for assessing the viability of wind and solar PV as alternatives to thermal electricity generation. I used as my departure point for this an article in which Ioannis Kessides and David Wade introduce a dynamic approach to EROI analysis.[1] Specifically, I drew on an illustrative example that they present, based on IEA data for coal-fired thermal and wind electricity generation in Japan, showing how the time required for coal and wind installations to provide sufficient energy to emplace additional generating capacity equal to their own can differ by an order of magnitude even where the EROI for coal and wind is identical. Given that the data on which this example was based was from prior to 2002, both the doubling time in Kessides & Wade’s example and the power return on investment in the extended analysis would likely be improved if up-to-date figures for emplacement energy and capacity factor were substituted for those from the IEA study. Unfortunately, this goes only a limited way to mitigating the central issue in terms of “real world” considerations. Continue reading